Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.768
Filtrar
1.
Neurobiol Aging ; 133: 125-133, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952397

RESUMO

There is a paucity of genetic studies of Alzheimer Disease (AD) in individuals of African Ancestry, despite evidence suggesting increased risk of AD in the African American (AA) population. We performed whole-genome sequencing (WGS) and multipoint linkage analyses in 51 multi-generational AA AD families ascertained through the Research in African American Alzheimer Disease Initiative (REAAADI) and the National Institute on Aging Late Onset Alzheimer's disease (NIA-LOAD) Family Based Study. Variants were prioritized on minor allele frequency (<0.01), functional potential of coding and noncoding variants, co-segregation with AD and presence in multi-ancestry ADSP release 3 WGS data. We identified a significant linkage signal on chromosome 5q35 (HLOD=3.3) driven by nine families. Haplotype segregation analysis in the family with highest LOD score identified a 3'UTR variant in INSYN2B with the most functional evidence. Four other linked AA families harbor within-family shared variants located in INSYN2B's promoter or enhancer regions. This AA family-based finding shows the importance of diversifying population-level genetic data to better understand the genetic determinants of AD on a global scale.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/epidemiologia , Escore Lod , Ligação Genética/genética , Haplótipos , Cromossomos , Predisposição Genética para Doença/genética
2.
Mol Psychiatry ; 28(1): 154-167, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35948660

RESUMO

Genetic studies of bipolar disorder (BP) have been conducted in the Latin American population, to date, in several countries, including Mexico, the United States, Costa Rica, Colombia, and, to a lesser extent, Brazil. These studies focused primarily on linkage-based designs utilizing families with multiplex cases of BP. Significant BP loci were identified on Chromosomes 18, 5 and 8, and fine mapping suggested several genes of interest underlying these linkage peaks. More recently, studies in these same pedigrees yielded significant linkage loci for BP endophenotypes, including measures of activity, sleep cycles, and personality traits. Building from findings in other populations, candidate gene association analyses in Latinos from Mexican and Central American ancestry confirmed the role of several genes (including CACNA1C and ANK3) in conferring BP risk. Although GWAS, methylation, and deep sequencing studies have only begun in these populations, there is evidence that CNVs and rare SNPs both play a role in BP risk of these populations. Large segments of the Latino populations in the Americas remain largely unstudied regarding BP genetics, but evidence to date has shown that this type of research can be successfully conducted in these populations and that the genetic underpinnings of BP in these cohorts share at least some characteristics with risk genes identified in European and other populations.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/genética , Ligação Genética/genética , Predisposição Genética para Doença/genética , Hispânico ou Latino/genética , Linhagem , Estados Unidos , População da América Central/genética
3.
Leg Med (Tokyo) ; 59: 102135, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029693

RESUMO

X-chromosomal markers have been proved as a useful tool for solving complex kinship cases due to its sex-linked inheriting feature. Among these markers, tightly linked X-STR clusters forming haplotypes are highly informative. The analysis of the haplotypes requires determination of linkage disequilibrium. In this study, genetic linkage, recombination fractions and mutation rates of 38 X-STR loci in 177 three-generation pedigrees were investigated. Genetic linkage analysis and calculation of recombination fractions were performed within each pair of markers and clusters. Then mutation rates were calculated. The results showed that, a) 22 recombination events happened within the tightly linked X-STR clusters, which span<1.0 Mb; b) significantly linked marker pairs were observed with the LOD (logarithm of the odds) scores > 2.0 (2.0104 to 54.8316); c) the average mutation rate of the 38 X-STR loci was 1.32 × 10-3 per meiosis in the Chinese Han population, with DXS10135 and DXS8377 presenting notably high mutation rate (6.5 × 10-3). Our results confirmed that meiotic recombination was not a simple function of physical distance, so that whether recombination occurred at the closely clustered X-STRs or not should be assumed cautiously considering the stability of haplotypes in inheritance process for kinship analysis. This study supplemented the existing database and laid an experimental foundation for the future study on genetic characteristics, recombination, and mutation of the X-STRs.


Assuntos
Cromossomos Humanos X , Repetições de Microssatélites , Humanos , Linhagem , Repetições de Microssatélites/genética , Cromossomos Humanos X/genética , Ligação Genética/genética , China
4.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216499

RESUMO

Salt stress is one of the most severe adverse environments in rice production; increasing salinization is seriously endangering rice production around the world. In this study, a rice backcross inbred line (BIL) population derived from the cross of 9311 and wild rice Oryza longistaminata was employed to identify the favorable genetic loci of O. longistaminata for salt tolerance. A total of 27 quantitative trait loci (QTLs) related to salt tolerance were identified in 140 rice BILs, and 17 QTLs formed seven QTL clusters on different chromosomes, of which 18 QTLs were derived from O. longistaminata, and a QTL for salt injury score (SIS), water content of seedlings (WCS) under salt treatment, and relative water content of seedlings (RWCS) was repeatedly detected and colocalized at the same site on chromosome 2, and a cytochrome P450 86B1 (MH02t0466900) was suggested as the potential candidate gene responsible for the salt tolerance based on sequence and expression analysis. These findings laid the foundation for further improving rice salt tolerance through molecular breeding in the future.


Assuntos
Oryza/genética , Locos de Características Quantitativas/genética , Tolerância ao Sal/genética , Cromossomos de Plantas/genética , Embaralhamento de DNA/métodos , Ligação Genética/genética , Fenótipo , Melhoramento Vegetal/métodos , Estresse Salino/genética , Plântula/genética
5.
J Assist Reprod Genet ; 39(3): 739-746, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35141813

RESUMO

PURPOSE: This study aimed to evaluate the value of long-read sequencing for preimplantation haplotype linkage analysis. METHODS: The genetic material of the three ß-thalassemia mutation carrier couples was sequenced using single-molecule real-time sequencing in the 7.7-kb region of the HBB gene and a 7.4-kb region that partially overlapped with it to detect the presence of 17 common HBB gene mutations in the Chinese population and the haplotypes formed by the continuous array of single-nucleotide polymorphisms linked to these mutations. By using the same method to analyze multiple displacement amplification products of embryos from three families and comparing the results with those of the parents, it could be revealed whether the embryos carry disease-causing mutations without the need for a proband. RESULTS: The HBB gene mutations of the three couples were accurately detected, and the haplotype linked to the pathogenic site was successfully obtained without the need for a proband. A total of 68.75% (22/32) of embryos from the three families successfully underwent haplotype linkage analysis, and the results were consistent with the results of NGS-based mutation site detection. CONCLUSION: This study supports long-read sequencing as a potential tool for preimplantation haplotype linkage analysis.


Assuntos
Diagnóstico Pré-Implantação , Talassemia beta , Feminino , Ligação Genética/genética , Testes Genéticos/métodos , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação/genética , Gravidez , Diagnóstico Pré-Implantação/métodos , Talassemia beta/diagnóstico , Talassemia beta/genética , Talassemia beta/patologia
6.
Int J Biol Macromol ; 193(Pt B): 1294-1300, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34757131

RESUMO

Whole genome sequence from Acinetobacter baumannii isolate Ab-46-1632 reveals a novel KL144 capsular polysaccharide (CPS) biosynthesis gene cluster, which carries genes for d-glucuronic acid (D-GlcA) and l-rhamnose (l-Rha) synthesis. The CPS was extracted from Ab-46-1632 and studied by 1H and 13C NMR spectroscopy, including a two-dimensional 1H,13C HMBC experiment and Smith degradation. The CPS was found to have a hexasaccharide repeat unit composed of four l-Rhap residues and one residue each of d-GlcpA and N-acetyl-d-glucosamine (D-GlcpNAc) consistent with sugar synthesis genes present in KL144. The K144 CPS structure was established and found to be related to those of A. baumannii K55, K74, K85, and K86. A comparison of the corresponding gene clusters to KL144 revealed a number of shared glycosyltransferase genes correlating to shared glycosidic linkages in the structures. One from the enzymes, encoded by only KL144 and KL86, is proposed to be a novel multifunctional rhamnosyltransfaerase likely responsible for synthesis of a shared α-l-Rhap-(1 â†’ 2)-α-L-Rhap-(1 â†’ 3)-L-Rhap trisaccharide fragment in the K144 and K86 structures.


Assuntos
Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Polissacarídeos Bacterianos/genética , Ligação Genética/genética , Glicosiltransferases/genética , Espectroscopia de Ressonância Magnética/métodos , Família Multigênica/genética , Sequenciamento Completo do Genoma/métodos
7.
Brain ; 144(12): 3727-3741, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34619763

RESUMO

Recently, we reported oligoadenylate synthetase 1 (OAS1) contributed to the risk of Alzheimer's disease, by its enrichment in transcriptional networks expressed by microglia. However, the function of OAS1 within microglia was not known. Using genotyping from 1313 individuals with sporadic Alzheimer's disease and 1234 control individuals, we confirm the OAS1 variant, rs1131454, is associated with increased risk for Alzheimer's disease. The same OAS1 locus has been recently associated with severe coronavirus disease 2019 (COVID-19) outcomes, linking risk for both diseases. The single nucleotide polymorphisms rs1131454(A) and rs4766676(T) are associated with Alzheimer's disease, and rs10735079(A) and rs6489867(T) are associated with severe COVID-19, where the risk alleles are linked with decreased OAS1 expression. Analysing single-cell RNA-sequencing data of myeloid cells from Alzheimer's disease and COVID-19 patients, we identify co-expression networks containing interferon (IFN)-responsive genes, including OAS1, which are significantly upregulated with age and both diseases. In human induced pluripotent stem cell-derived microglia with lowered OAS1 expression, we show exaggerated production of TNF-α with IFN-γ stimulation, indicating OAS1 is required to limit the pro-inflammatory response of myeloid cells. Collectively, our data support a link between genetic risk for Alzheimer's disease and susceptibility to critical illness with COVID-19 centred on OAS1, a finding with potential implications for future treatments of Alzheimer's disease and COVID-19, and development of biomarkers to track disease progression.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Doença de Alzheimer/genética , COVID-19/genética , Ligação Genética/genética , Predisposição Genética para Doença/genética , Gravidade do Paciente , Adolescente , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , COVID-19/diagnóstico , COVID-19/epidemiologia , Células Cultivadas , Feminino , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/epidemiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
8.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638580

RESUMO

Wheat powdery mildew, caused by the obligate parasite Blumeria graminis f. sp. tritici, severely reduces wheat yields. Identifying durable and effective genes against wheat powdery mildew and further transferring them into wheat cultivars is important for finally controlling this disease in wheat production. Pm40 has been widely used in wheat breeding programs in Southwest China due to the spectrum and potentially durable resistance to powdery mildew. In the present study, a resistance test demonstrated that Pm40 is still effective against the Bgt race E20. We identified and cloned the TraesCS7B01G164000 with a total length of 4883 bp, including three exons and two introns, and encoded a protein carrying the CC-NBS-NBS-LRR domain in the Pm40-linked region flanked by two EST markers, BF478514 and BF291338, by integrating analysis of gene annotation in wheat reference genome and both sequence and expression difference in available transcriptome data. Two missense mutations were detected at positions 68 and 83 in the CC domain. The results of both cosegregation linkage analysis and qRT-PCR also suggested that TraesCS7B01G164000 was a potential candidate gene of Pm40. This study allowed us to move toward the final successfully clone and apply Pm40 in wheat resistance improvement by gene engineering.


Assuntos
Genes de Plantas/genética , Proteínas de Plantas/genética , Transcrição Gênica/genética , Triticum/genética , Triticum/microbiologia , Ascomicetos/patogenicidade , China , Mapeamento Cromossômico/métodos , Clonagem Molecular/métodos , Resistência à Doença/genética , Éxons/genética , Ligação Genética/genética , Íntrons/genética , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma/genética
9.
PLoS Genet ; 17(10): e1009848, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662339

RESUMO

Patients with inherited retinal dystrophies (IRDs) were recruited from two understudied populations: Mexico and Pakistan as well as a third well-studied population of European Americans to define the genetic architecture of IRD by performing whole-genome sequencing (WGS). Whole-genome analysis was performed on 409 individuals from 108 unrelated pedigrees with IRDs. All patients underwent an ophthalmic evaluation to establish the retinal phenotype. Although the 108 pedigrees in this study had previously been examined for mutations in known IRD genes using a wide range of methodologies including targeted gene(s) or mutation(s) screening, linkage analysis and exome sequencing, the gene mutations responsible for IRD in these 108 pedigrees were not determined. WGS was performed on these pedigrees using Illumina X10 at a minimum of 30X depth. The sequence reads were mapped against hg19 followed by variant calling using GATK. The genome variants were annotated using SnpEff, PolyPhen2, and CADD score; the structural variants (SVs) were called using GenomeSTRiP and LUMPY. We identified potential causative sequence alterations in 61 pedigrees (57%), including 39 novel and 54 reported variants in IRD genes. For 57 of these pedigrees the observed genotype was consistent with the initial clinical diagnosis, the remaining 4 had the clinical diagnosis reclassified based on our findings. In seven pedigrees (12%) we observed atypical causal variants, i.e. unexpected genotype(s), including 4 pedigrees with causal variants in more than one IRD gene within all affected family members, one pedigree with intrafamilial genetic heterogeneity (different affected family members carrying causal variants in different IRD genes), one pedigree carrying a dominant causative variant present in pseudo-recessive form due to consanguinity and one pedigree with a de-novo variant in the affected family member. Combined atypical and large structural variants contributed to about 20% of cases. Among the novel mutations, 75% were detected in Mexican and 50% found in European American pedigrees and have not been reported in any other population while only 20% were detected in Pakistani pedigrees and were not previously reported. The remaining novel IRD causative variants were listed in gnomAD but were found to be very rare and population specific. Mutations in known IRD associated genes contributed to pathology in 63% Mexican, 60% Pakistani and 45% European American pedigrees analyzed. Overall, contribution of known IRD gene variants to disease pathology in these three populations was similar to that observed in other populations worldwide. This study revealed a spectrum of mutations contributing to IRD in three populations, identified a large proportion of novel potentially causative variants that are specific to the corresponding population or not reported in gnomAD and shed light on the genetic architecture of IRD in these diverse global populations.


Assuntos
Etnicidade/genética , Degeneração Retiniana/genética , Consanguinidade , Análise Mutacional de DNA/métodos , Exoma/genética , Proteínas do Olho/genética , Feminino , Estudos de Associação Genética/métodos , Ligação Genética/genética , Genótipo , Humanos , Masculino , México , Mutação/genética , Paquistão , Linhagem , Retina/patologia , Sequenciamento do Exoma/métodos , Sequenciamento Completo do Genoma/métodos
10.
Genes (Basel) ; 12(10)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34680883

RESUMO

Dwarfism phenotypes occur in many species and may be caused by genetic or environmental factors. In this study, we investigated a family of nine Dogo Argentino dogs, in which two dogs were affected by disproportionate dwarfism. Radiographs of an affected dog revealed a decreased level of endochondral ossification in its growth plates, and a premature closure of the distal ulnar physes. The pedigree of the dogs presented evidence of monogenic autosomal recessive inheritance; combined linkage and homozygosity mapping assigned the most likely position of a potential genetic defect to 34 genome segments, totaling 125 Mb. The genome of an affected dog was sequenced and compared to 795 control genomes. The prioritization of private variants revealed a clear top candidate variant for the observed dwarfism. This variant, PRKG2:XM_022413533.1:c.1634+1G>T, affects the splice donor site and is therefore predicted to disrupt the function of the PKRG2 gene encoding protein, kinase cGMP-dependent type 2, a known regulator of chondrocyte differentiation. The genotypes of the PRKG2 variant were perfectly associated with the phenotype in the studied family of dogs. PRKG2 loss-of-function variants were previously reported to cause disproportionate dwarfism in humans, cattle, mice, and rats. Together with the comparative data from other species, our data strongly suggest PRKG2:c.1634+1G>T to be a candidate causative variant for the observed dwarfism phenotype in Dogo Argentino dogs.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo II/genética , Doenças do Cão/genética , Nanismo/genética , Predisposição Genética para Doença , Animais , Bovinos , Doenças do Cão/patologia , Cães , Nanismo/patologia , Nanismo/veterinária , Ligação Genética/genética , Genótipo , Humanos , Camundongos , Mutação/genética , Linhagem , Fenótipo , Isoformas de Proteínas/genética , Ratos
11.
Genes (Basel) ; 12(10)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34680889

RESUMO

Primary microcephaly (MCPH) is a prenatal condition of small brain size with a varying degree of intellectual disability. It is a heterogeneous genetic disorder with 28 associated genes reported so far. Most of these genes encode centrosomal proteins. Recently, AKNA was recognized as a novel centrosomal protein that regulates neurogenesis via microtubule organization, making AKNA a likely candidate gene for MCPH. Using linkage analysis and whole-exome sequencing, we found a frameshift variant in exon 12 of AKNA (NM_030767.4: c.2737delG) that cosegregates with microcephaly, mild intellectual disability and speech impairment in a consanguineous family from Pakistan. This variant is predicted to result in a protein with a truncated C-terminus (p.(Glu913Argfs*42)), which has been shown to be indispensable to AKNA's localization to the centrosome and a normal brain development. Moreover, the amino acid sequence is altered from the beginning of the second of the two PEST domains, which are rich in proline (P), glutamic acid (E), serine (S), and threonine (T) and common to rapidly degraded proteins. An impaired function of the PEST domains may affect the intracellular half-life of the protein. Our genetic findings compellingly substantiate the predicted candidacy, based on its newly ascribed functional features, of the multifaceted protein AKNA for association with MCPH.


Assuntos
Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Microcefalia/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adolescente , Centrossomo/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Criança , Feminino , Mutação da Fase de Leitura/genética , Ligação Genética/genética , Haplótipos/genética , Homozigoto , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/patologia , Masculino , Microcefalia/epidemiologia , Microcefalia/patologia , Paquistão/epidemiologia , Linhagem , Sequenciamento do Exoma
12.
Genes (Basel) ; 12(10)2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681001

RESUMO

Known multiple sclerosis (MS) susceptibility variants can only explain half of the disease's estimated heritability, whereas low-frequency and rare variants may partly account for the missing heritability. Thus, here we sought to determine the occurrence of rare functional variants in a large Italian MS multiplex family with five affected members. For this purpose, we combined linkage analysis and next-generation sequencing (NGS)-based whole exome and whole genome sequencing (WES and WGS, respectively). The genetic burden attributable to known common MS variants was also assessed by weighted genetic risk score (wGRS). We found a significantly higher burden of common variants in the affected family members compared to that observed among sporadic MS patients and healthy controls (HCs). We also identified 34 genes containing at least one low-frequency functional variant shared among all affected family members, showing a significant enrichment in genes involved in specific biological processes-particularly mRNA transport-or neurodegenerative diseases. Altogether, our findings point to a possible pathogenic role of different low-frequency functional MS variants belonging to shared pathways. We propose that these rare variants, together with other known common MS variants, may account for the high number of affected family members within this MS multiplex family.


Assuntos
Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , Genoma Humano/genética , Esclerose Múltipla/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudos de Associação Genética , Ligação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/patologia , Linhagem , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
13.
Mol Biol Rep ; 48(8): 5955-5964, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34350550

RESUMO

BACKGROUND: Vitiligo is a complex disease in which patchy depigmentation is the result of an autoimmune-induced loss of melanocytes in affected regions. On the basis of a genome-wide linkage analysis of vitiligo in the Chinese Han population, we previously showed significant evidence of a linkage between 22q12 and vitiligo. Our aim in the current study was to identify vitiligo susceptibility variants within an expanded region of the 22q12 locus. METHODS AND RESULTS: An in-depth analysis of the expanded region of the 22q12 locus was performed by imputation using a large GWAS dataset consisting of 1117 cases and 1701 controls. Eight nominal SNPs were selected and genotyped in an independent cohort of Chinese Han individuals (2069 patients and 1370 control individuals) by using the Sequenom MassArray iPLEX1 system. The data were analyzed with PLINK 1.07 software. The C allele of rs730669 located in ZDHHC8/RTN4R showed a strong association with vitiligo (P = 3.25 × 10-8, OR = 0.81). The C allele of rs4820338 located in VPREB1 and the A allele of rs2051582 (a SNP reported in our previous study) located in IL2RB showed a suggestive association with vitiligo (P = 1.04 × 10-5, OR = 0.86; P = 1.78 × 10-6, OR = 1.27). The three identified SNPs showed independent associations with vitiligo in a conditional logistic regression analysis (all P < 1.0 × 10-5; all D' < 0.05 and r2 < 1.0 × 10-4). CONCLUSIONS: The study reveals that two novel variants rs730669 (ZDHHC8/RTN4R) and rs4820338 (VPREB1) on 22q11.2 might confer susceptibility to vitiligo and affect disease subphenotypes. The presence of multiple independent variants emphasizes their important roles in the genetic pathogenesis of disease.


Assuntos
Cromossomos Humanos Par 22/genética , Vitiligo/genética , Aciltransferases/genética , Adolescente , Adulto , Alelos , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Estudos de Coortes , Etnicidade/genética , Feminino , Frequência do Gene/genética , Ligação Genética/genética , Predisposição Genética para Doença , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Cadeias Leves Substitutas da Imunoglobulina/genética , Masculino , Proteínas de Membrana/genética , Receptor Nogo 1/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
14.
Genes (Basel) ; 12(7)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34356095

RESUMO

In heterothallic basidiomycete fungi, sexual compatibility is restricted by mating types, typically controlled by two loci: PR, encoding pheromone precursors and pheromone receptors, and HD, encoding two types of homeodomain transcription factors. We analysed the single mating-type locus of the commercial button mushroom variety, Agaricus bisporus var. bisporus, and of the related variety burnettii. We identified the location of the mating-type locus using genetic map and genome information, corresponding to the HD locus, the PR locus having lost its mating-type role. We found the mip1 and ß-fg genes flanking the HD genes as in several Agaricomycetes, two copies of the ß-fg gene, an additional HD2 copy in the reference genome of A. bisporus var. bisporus and an additional HD1 copy in the reference genome of A. bisporus var. burnettii. We detected a 140 kb-long inversion between mating types in an A. bisporus var. burnettii heterokaryon, trapping the HD genes, the mip1 gene and fragments of additional genes. The two varieties had islands of transposable elements at the mating-type locus, spanning 35 kb in the A. bisporus var. burnettii reference genome. Linkage analyses showed a region with low recombination in the mating-type locus region in the A. bisporus var. burnettii variety. We found high differentiation between ß-fg alleles in both varieties, indicating an ancient event of recombination suppression, followed more recently by a suppression of recombination at the mip1 gene through the inversion in A. bisporus var. burnettii and a suppression of recombination across whole chromosomes in A. bisporus var. bisporus, constituting stepwise recombination suppression as in many other mating-type chromosomes and sex chromosomes.


Assuntos
Agaricus/genética , Cromossomos/genética , Genes Fúngicos Tipo Acasalamento/genética , Agaricus/metabolismo , Alelos , Basidiomycota/genética , DNA Fúngico/genética , Ligação Genética/genética , Genoma Fúngico/genética , Recombinação Genética/genética
15.
PLoS Genet ; 17(8): e1009716, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34339417

RESUMO

We investigated a hereditary cerebellar ataxia in Belgian Shepherd dogs. Affected dogs developed uncoordinated movements and intention tremor at two weeks of age. The severity of clinical signs was highly variable. Histopathology demonstrated atrophy of the CNS, particularly in the cerebellum. Combined linkage and homozygosity mapping in a family with four affected puppies delineated a 52 Mb critical interval. The comparison of whole genome sequence data of one affected dog to 735 control genomes revealed a private homozygous structural variant in the critical interval, Chr4:66,946,539_66,963,863del17,325. This deletion includes the entire protein coding sequence of SELENOP and is predicted to result in complete absence of the encoded selenoprotein P required for selenium transport into the CNS. Genotypes at the deletion showed the expected co-segregation with the phenotype in the investigated family. Total selenium levels in the blood of homozygous mutant puppies of the investigated litter were reduced to about 30% of the value of a homozygous wildtype littermate. Genotyping >600 Belgian Shepherd dogs revealed an additional homozygous mutant dog. This dog also suffered from pronounced ataxia, but reached an age of 10 years. Selenop-/- knock-out mice were reported to develop ataxia, but their histopathological changes were less severe than in the investigated dogs. Our results demonstrate that deletion of the SELENOP gene in dogs cause a defect in selenium transport associated with CNS atrophy and cerebellar ataxia (CACA). The affected dogs represent a valuable spontaneous animal model to gain further insights into the pathophysiological consequences of CNS selenium deficiency.


Assuntos
Ataxia Cerebelar/genética , Selenoproteína P/genética , Selenoproteína P/metabolismo , Animais , Atrofia/fisiopatologia , Sistema Nervoso Central/fisiologia , Ataxia Cerebelar/metabolismo , Doenças do Cão/genética , Cães , Feminino , Ligação Genética/genética , Genoma/genética , Genótipo , Homozigoto , Masculino , Fenótipo , Sequenciamento Completo do Genoma/métodos
16.
PLoS One ; 16(8): e0255728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411124

RESUMO

AIM: A recent meta-analysis of genome-wide linkage studies (GWLS) has identified multiple genetic regions suggestive of linkage with DN harboring hundreds of genes. Moving this number of genetic loci forward into biological insight is truly the next step. Here, we approach this challenge with a gene ontology (GO) analysis in order to yield biological and functional role to the genes, an over-representation test to find which GO terms are enriched in the gene list, pathway analysis, as well as protein network analysis. METHOD: GO analysis was performed using protein analysis through evolutionary relationships (PANTHER) version 14.0 software and P-values less than 0.05 were considered statistically significant. GO analysis was followed by over-representation test for the identification of enriched terms. Statistical significance was calculated by Fisher's exact test and adjusted using the false discovery rate (FDR) for correction of multiple tests. Cytoscape with the relevant plugins was used for the construction of the protein network and clustering analysis. RESULTS: The GO analysis assign multiple GO terms to the genes regarding the molecular function, the biological process and the cellular component, protein class and pathway analysis. The findings of the over-representation test highlight the contribution of cell adhesion regarding the biological process, integral components of plasma membrane regarding the cellular component, chemokines and cytokines with regard to protein class, while the pathway analysis emphasizes the contribution of Wnt and cadherin signaling pathways. CONCLUSIONS: Our results suggest that a core feature of the pathogenesis of DN may be a disturbance in Wnt and cadherin signaling pathways, whereas the contribution of chemokines and cytokines need to be studied in additional studies.


Assuntos
Caderinas/genética , Biologia Computacional , Nefropatias Diabéticas/genética , Via de Sinalização Wnt/genética , Análise por Conglomerados , Nefropatias Diabéticas/epidemiologia , Nefropatias Diabéticas/patologia , Ontologia Genética , Ligação Genética/genética , Genoma Humano/genética , Humanos , Software
17.
PLoS One ; 16(8): e0255846, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34383835

RESUMO

Human enteroviruses (EVs) comprise more than 100 types of coxsackievirus, echovirus, poliovirus and numbered enteroviruses, which are mainly transmitted by the faecal-oral route leading to diverse diseases such as aseptic meningitis, encephalitis, and acute flaccid paralysis, among others. Since enteroviruses are excreted in faeces, wastewater-based epidemiology approaches are useful to describe EV diversity in a community. In Uruguay, knowledge about enteroviruses is extremely limited. This study assessed the diversity of enteroviruses through Illumina next-generation sequencing of VP1-amplicons obtained by RT-PCR directly applied to viral concentrates of 84 wastewater samples collected in Uruguay during 2011-2012 and 2017-2018. Fifty out of the 84 samples were positive for enteroviruses. There were detected 27 different types belonging to Enterovirus A species (CVA2-A6, A10, A16, EV-A71, A90), Enterovirus B species (CVA9, B1-B5, E1, E6, E11, E14, E21, E30) and Enterovirus C species (CVA1, A13, A19, A22, A24, EV-C99). Enterovirus A71 (EV-A71) and echovirus 30 (E30) strains were studied more in depth through phylogenetic analysis, together with some strains previously detected by us in Argentina. Results unveiled that EV-A71 sub-genogroup C2 circulates in both countries at least since 2011-2012, and that the C1-like emerging variant recently entered in Argentina. We also confirmed the circulation of echovirus 30 genotypes E and F in Argentina, and reported the detection of genotype E in Uruguay. To the best of our knowledge this is the first report of the EV-A71 C1-like emerging variant in South-America, and the first report of EV-A71 and E30 in Uruguay.


Assuntos
Enterovirus Humano A/genética , Enterovirus Humano B/genética , Ligação Genética/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Enterovirus Humano A/classificação , Enterovirus Humano A/isolamento & purificação , Enterovirus Humano B/classificação , Enterovirus Humano B/isolamento & purificação , Enterovirus Humano C/classificação , Enterovirus Humano C/genética , Enterovirus Humano C/isolamento & purificação , Genótipo , Humanos , Filogenia , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Estações do Ano , América do Sul , Uruguai , Águas Residuárias/virologia
18.
Sci Rep ; 11(1): 16298, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381090

RESUMO

The Solanaceae family includes commercially important vegetable crops characterized by their relative sensitivity to salinity. Evaluation of 8 eggplant (Solanum melongena), 7 tomato (Solanum lycopersicum), and 8 pepper (Capsicum spp.) heirloom cultivars from different geographic regions revealed significant variation in salt tolerance. Relative fruit yield under salt treatment varied from 52 to 114% for eggplant, 56 to 84% for tomato, and 52 to 99% for pepper. Cultivars from all three crops, except Habanero peppers, restricted Na transport from roots to shoots under salinity. The high salt tolerance level showed a strong association with low leaf Na concentration. Additionally, the leaf K-salinity/K-control ratio was critical in determining the salinity tolerance of a genotype. Differences in relative yield under salinity were regulated by several component traits, which was consistent with the gene expression of relevant genes. Gene expression analyses using 12 genes associated with salt tolerance showed that, for eggplant and pepper, Na+ exclusion was a vital component trait, while sequestration of Na+ into vacuoles was critical for tomato plants. The high variability for salt tolerance found in heirloom cultivars helped characterize genotypes based on component traits of salt tolerance and will enable breeders to increase the salt tolerance of Solanaceae cultivars.


Assuntos
Capsicum/genética , Ligação Genética/genética , Íons/metabolismo , Tolerância ao Sal/genética , Solanum lycopersicum/genética , Solanum melongena/genética , Capsicum/metabolismo , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Potássio/metabolismo , Salinidade , Sódio/metabolismo , Solanum melongena/metabolismo
19.
PLoS Comput Biol ; 17(7): e1009182, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228722

RESUMO

Sample size calculations are an essential component of the design and evaluation of scientific studies. However, there is a lack of clear guidance for determining the sample size needed for phylogenetic studies, which are becoming an essential part of studying pathogen transmission. We introduce a statistical framework for determining the number of true infector-infectee transmission pairs identified by a phylogenetic study, given the size and population coverage of that study. We then show how characteristics of the criteria used to determine linkage and aspects of the study design can influence our ability to correctly identify transmission links, in sometimes counterintuitive ways. We test the overall approach using outbreak simulations and provide guidance for calculating the sensitivity and specificity of the linkage criteria, the key inputs to our approach. The framework is freely available as the R package phylosamp, and is broadly applicable to designing and evaluating a wide array of pathogen phylogenetic studies.


Assuntos
Biologia Computacional/métodos , Filogenia , Tamanho da Amostra , Bactérias/classificação , Bactérias/genética , Ligação Genética/genética , Humanos , Infecções/microbiologia , Infecções/transmissão , Infecções/virologia , Projetos de Pesquisa , Sensibilidade e Especificidade , Vírus/classificação , Vírus/genética
20.
Am J Med Genet A ; 185(11): 3266-3275, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34159713

RESUMO

The past 45 years have witnessed a triumph in the discovery of genes and genetic variation that cause Mendelian disorders due to high impact variants. Important discoveries and organized projects have provided the necessary tools and infrastructure for the identification of gene defects leading to thousands of monogenic phenotypes. This endeavor can be divided in three phases in which different laboratory strategies were employed for the discovery of disease-related genes: (i) the biochemical phase, (ii) the genetic linkage followed by positional cloning phase, and (iii) the sequence identification phase. However, much more work is needed to identify all the high impact genomic variation that substantially contributes to the phenotypic variation.


Assuntos
Bases de Dados Genéticas/história , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Doenças Genéticas Inatas/epidemiologia , Doenças Genéticas Inatas/história , Ligação Genética/genética , Genômica/história , História do Século XX , História do Século XXI , Humanos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...